Migrate from LiteLLM
Switch from self-hosted LiteLLM to managed LLM Gateway. Same API format, zero infrastructure to maintain.
Running your own LiteLLM proxy works—until it doesn't. Scaling, monitoring, and keeping it running becomes another job. LLM Gateway gives you the same unified API with built-in analytics, caching, and a dashboard—without the infrastructure overhead.
Quick Migration
Both services use OpenAI-compatible endpoints, so migration is a two-line change:
1- const baseURL = "http://localhost:4000/v1"; // LiteLLM proxy2+ const baseURL = "https://api.llmgateway.io/v1";34- const apiKey = process.env.LITELLM_API_KEY;5+ const apiKey = process.env.LLM_GATEWAY_API_KEY;
1- const baseURL = "http://localhost:4000/v1"; // LiteLLM proxy2+ const baseURL = "https://api.llmgateway.io/v1";34- const apiKey = process.env.LITELLM_API_KEY;5+ const apiKey = process.env.LLM_GATEWAY_API_KEY;
Why Teams Switch to LLM Gateway
| What You Get | LiteLLM (Self-Hosted) | LLM Gateway |
|---|---|---|
| OpenAI-compatible API | Yes | Yes |
| Infrastructure to manage | Yes (you run it) | No (we run it) |
| Managed cloud option | No | Yes |
| Analytics dashboard | Basic | Per-request detail |
| Response caching | Manual setup | Built-in, automatic |
| Cost tracking | Via callbacks | Native, real-time |
| Provider key management | Config file | Web UI with rotation |
| Uptime & scaling | You handle it | 99.9% SLA (Pro/Ent) |
Still want to self-host? LLM Gateway is open source under AGPLv3—same features, your infrastructure.
For a detailed breakdown, see LLM Gateway vs LiteLLM.
Migration Steps
1. Get Your LLM Gateway API Key
Sign up at llmgateway.io/signup and create an API key from your dashboard.
2. Map Your Models
LLM Gateway supports two model ID formats:
Root Model IDs (without provider prefix) - Uses smart routing to automatically select the best provider based on uptime, throughput, price, and latency:
1gpt-5.22claude-opus-4-5-202511013gemini-3-flash-preview
1gpt-5.22claude-opus-4-5-202511013gemini-3-flash-preview
Provider-Prefixed Model IDs - Routes to a specific provider with automatic failover if uptime drops below 90%:
1openai/gpt-5.22anthropic/claude-opus-4-5-202511013google-ai-studio/gemini-3-flash-preview
1openai/gpt-5.22anthropic/claude-opus-4-5-202511013google-ai-studio/gemini-3-flash-preview
This means many LiteLLM model names work directly with LLM Gateway:
| LiteLLM Model | LLM Gateway Model |
|---|---|
| gpt-5.2 | gpt-5.2 or openai/gpt-5.2 |
| claude-opus-4-5-20251101 | claude-opus-4-5-20251101 or anthropic/claude-opus-4-5-20251101 |
| gemini/gemini-3-flash-preview | gemini-3-flash-preview or google-ai-studio/gemini-3-flash-preview |
| bedrock/claude-opus-4-5-20251101 | claude-opus-4-5-20251101 or aws-bedrock/claude-opus-4-5-20251101 |
For more details on routing behavior, see the routing documentation.
3. Update Your Code
Python with OpenAI SDK
1from openai import OpenAI23# Before (LiteLLM proxy)4client = OpenAI(5 base_url="http://localhost:4000/v1",6 api_key=os.environ["LITELLM_API_KEY"]7)89response = client.chat.completions.create(10 model="gpt-4",11 messages=[{"role": "user", "content": "Hello!"}]12)1314# After (LLM Gateway) - model name can stay the same!15client = OpenAI(16 base_url="https://api.llmgateway.io/v1",17 api_key=os.environ["LLM_GATEWAY_API_KEY"]18)1920response = client.chat.completions.create(21 model="gpt-4", # or "openai/gpt-4" to target a specific provider22 messages=[{"role": "user", "content": "Hello!"}]23)
1from openai import OpenAI23# Before (LiteLLM proxy)4client = OpenAI(5 base_url="http://localhost:4000/v1",6 api_key=os.environ["LITELLM_API_KEY"]7)89response = client.chat.completions.create(10 model="gpt-4",11 messages=[{"role": "user", "content": "Hello!"}]12)1314# After (LLM Gateway) - model name can stay the same!15client = OpenAI(16 base_url="https://api.llmgateway.io/v1",17 api_key=os.environ["LLM_GATEWAY_API_KEY"]18)1920response = client.chat.completions.create(21 model="gpt-4", # or "openai/gpt-4" to target a specific provider22 messages=[{"role": "user", "content": "Hello!"}]23)
Python with LiteLLM Library
If you're using the LiteLLM library directly, you can point it to LLM Gateway:
1import litellm23# Before (direct LiteLLM)4response = litellm.completion(5 model="gpt-4",6 messages=[{"role": "user", "content": "Hello!"}]7)89# After (via LLM Gateway) - same model name works10response = litellm.completion(11 model="gpt-4", # or "openai/gpt-4" to target a specific provider12 messages=[{"role": "user", "content": "Hello!"}],13 api_base="https://api.llmgateway.io/v1",14 api_key=os.environ["LLM_GATEWAY_API_KEY"]15)
1import litellm23# Before (direct LiteLLM)4response = litellm.completion(5 model="gpt-4",6 messages=[{"role": "user", "content": "Hello!"}]7)89# After (via LLM Gateway) - same model name works10response = litellm.completion(11 model="gpt-4", # or "openai/gpt-4" to target a specific provider12 messages=[{"role": "user", "content": "Hello!"}],13 api_base="https://api.llmgateway.io/v1",14 api_key=os.environ["LLM_GATEWAY_API_KEY"]15)
TypeScript/JavaScript
1import OpenAI from "openai";23// Before (LiteLLM proxy)4const client = new OpenAI({5 baseURL: "http://localhost:4000/v1",6 apiKey: process.env.LITELLM_API_KEY,7});89// After (LLM Gateway) - same model name works10const client = new OpenAI({11 baseURL: "https://api.llmgateway.io/v1",12 apiKey: process.env.LLM_GATEWAY_API_KEY,13});1415const completion = await client.chat.completions.create({16 model: "gpt-4", // or "openai/gpt-4" to target a specific provider17 messages: [{ role: "user", content: "Hello!" }],18});
1import OpenAI from "openai";23// Before (LiteLLM proxy)4const client = new OpenAI({5 baseURL: "http://localhost:4000/v1",6 apiKey: process.env.LITELLM_API_KEY,7});89// After (LLM Gateway) - same model name works10const client = new OpenAI({11 baseURL: "https://api.llmgateway.io/v1",12 apiKey: process.env.LLM_GATEWAY_API_KEY,13});1415const completion = await client.chat.completions.create({16 model: "gpt-4", // or "openai/gpt-4" to target a specific provider17 messages: [{ role: "user", content: "Hello!" }],18});
cURL
1# Before (LiteLLM proxy)2curl http://localhost:4000/v1/chat/completions \3 -H "Authorization: Bearer $LITELLM_API_KEY" \4 -H "Content-Type: application/json" \5 -d '{6 "model": "gpt-4",7 "messages": [{"role": "user", "content": "Hello!"}]8 }'910# After (LLM Gateway) - same model name works11curl https://api.llmgateway.io/v1/chat/completions \12 -H "Authorization: Bearer $LLM_GATEWAY_API_KEY" \13 -H "Content-Type: application/json" \14 -d '{15 "model": "gpt-4",16 "messages": [{"role": "user", "content": "Hello!"}]17 }'18# Use "openai/gpt-4" to target a specific provider
1# Before (LiteLLM proxy)2curl http://localhost:4000/v1/chat/completions \3 -H "Authorization: Bearer $LITELLM_API_KEY" \4 -H "Content-Type: application/json" \5 -d '{6 "model": "gpt-4",7 "messages": [{"role": "user", "content": "Hello!"}]8 }'910# After (LLM Gateway) - same model name works11curl https://api.llmgateway.io/v1/chat/completions \12 -H "Authorization: Bearer $LLM_GATEWAY_API_KEY" \13 -H "Content-Type: application/json" \14 -d '{15 "model": "gpt-4",16 "messages": [{"role": "user", "content": "Hello!"}]17 }'18# Use "openai/gpt-4" to target a specific provider
4. Migrate Configuration
LiteLLM Config (Before)
1# litellm_config.yaml2model_list:3 - model_name: gpt-44 litellm_params:5 model: gpt-46 api_key: sk-...7 - model_name: claude-38 litellm_params:9 model: claude-3-sonnet-2024022910 api_key: sk-ant-...
1# litellm_config.yaml2model_list:3 - model_name: gpt-44 litellm_params:5 model: gpt-46 api_key: sk-...7 - model_name: claude-38 litellm_params:9 model: claude-3-sonnet-2024022910 api_key: sk-ant-...
LLM Gateway (After)
With LLM Gateway, you don't need a config file. Provider keys are managed in the web dashboard, or you can use the default LLM Gateway keys.
If you want to use your own provider keys, configure them in the dashboard under Settings > Provider Keys.
Streaming Support
LLM Gateway supports streaming identically to LiteLLM:
1from openai import OpenAI23client = OpenAI(4 base_url="https://api.llmgateway.io/v1",5 api_key=os.environ["LLM_GATEWAY_API_KEY"]6)78stream = client.chat.completions.create(9 model="openai/gpt-4",10 messages=[{"role": "user", "content": "Write a story"}],11 stream=True12)1314for chunk in stream:15 if chunk.choices[0].delta.content:16 print(chunk.choices[0].delta.content, end="")
1from openai import OpenAI23client = OpenAI(4 base_url="https://api.llmgateway.io/v1",5 api_key=os.environ["LLM_GATEWAY_API_KEY"]6)78stream = client.chat.completions.create(9 model="openai/gpt-4",10 messages=[{"role": "user", "content": "Write a story"}],11 stream=True12)1314for chunk in stream:15 if chunk.choices[0].delta.content:16 print(chunk.choices[0].delta.content, end="")
Function/Tool Calling
LLM Gateway supports function calling:
1from openai import OpenAI23client = OpenAI(4 base_url="https://api.llmgateway.io/v1",5 api_key=os.environ["LLM_GATEWAY_API_KEY"]6)78tools = [{9 "type": "function",10 "function": {11 "name": "get_weather",12 "description": "Get the weather for a location",13 "parameters": {14 "type": "object",15 "properties": {16 "location": {"type": "string"}17 },18 "required": ["location"]19 }20 }21}]2223response = client.chat.completions.create(24 model="openai/gpt-4",25 messages=[{"role": "user", "content": "What's the weather in Tokyo?"}],26 tools=tools27)
1from openai import OpenAI23client = OpenAI(4 base_url="https://api.llmgateway.io/v1",5 api_key=os.environ["LLM_GATEWAY_API_KEY"]6)78tools = [{9 "type": "function",10 "function": {11 "name": "get_weather",12 "description": "Get the weather for a location",13 "parameters": {14 "type": "object",15 "properties": {16 "location": {"type": "string"}17 },18 "required": ["location"]19 }20 }21}]2223response = client.chat.completions.create(24 model="openai/gpt-4",25 messages=[{"role": "user", "content": "What's the weather in Tokyo?"}],26 tools=tools27)
Removing LiteLLM Infrastructure
After verifying LLM Gateway works for your use case, you can decommission your LiteLLM proxy:
- Update all clients to use LLM Gateway endpoints
- Monitor the LLM Gateway dashboard for successful requests
- Shut down your LiteLLM proxy server
- Remove LiteLLM configuration files
What Changes After Migration
- No servers to babysit — We handle scaling, uptime, and updates
- Real-time cost visibility — See what every request costs, broken down by model
- Automatic caching — Repeated requests hit cache, reducing your spend
- Web-based management — No more editing YAML files for config changes
- New models immediately — Access new releases within 48 hours, no deployment needed
Self-Hosting LLM Gateway
If you prefer self-hosting like LiteLLM, LLM Gateway is available under AGPLv3:
1git clone https://github.com/llmgateway/llmgateway2cd llmgateway3pnpm install4pnpm setup5pnpm dev
1git clone https://github.com/llmgateway/llmgateway2cd llmgateway3pnpm install4pnpm setup5pnpm dev
This gives you the same benefits as LiteLLM's self-hosted proxy with LLM Gateway's analytics and caching features.
Full Comparison
Want to see a detailed breakdown of all features? Check out our LLM Gateway vs LiteLLM comparison page.
Need Help?
- Browse available models at llmgateway.io/models
- Read the API documentation
- Contact support at [email protected]